Tyrosine side chains as an electrochemical probe of stacked beta-sheet protein conformations.

نویسندگان

  • Anna Loksztejn
  • Wojciech Dzwolak
  • Paweł Krysiński
چکیده

The in vivo formation of beta-pleated protein aggregates underlies a number of fatal neurodegenerative disorders, such as Alzheimer disease. Since molecular mechanisms of protein misfolding and aggregation remain poorly understood, this has been calling for many diverse biophysical tools capable of addressing different dynamic and conformational aspects of the phenomenon. The two model polypeptides used in this study are poly(l-tyrosine) and insulin. According to FT-IR spectra, poly(l-tyrosine) produced two distinct types of films with dominant either disordered or antiparallel beta-sheet conformations depending on carrier solvent used for film's deposition. Electrochemical analysis of both the types of polypeptide films by the means of cyclic voltammetry and differential pulse voltammetry proved that different electrochemical behaviour of the tyrosine residues is determined by the conformation of polypeptide chains. We have rationalized this difference in terms of varying electrochemical accessibility of Tyr residues in each structure. We have also carried out spectral and electrochemical characterization of insulin beta-sheet-rich amyloid fibrils. It appears that the detectable electrochemical response of the protein stems from the presence of four tyrosine residues per insulin monomer. Since hydrophobic residues, among them tyrosines play an important role in the formation of protein amyloid fibrils, but, on a molecular level, may be also critical in explaining neurotoxic properties of aggregates, their electrochemical properties may become a very valuable complementary tool in biophysical studies on protein misfolding.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular dynamics simulations of protein folding from the transition state.

Putative transition-state ensemble (TSE) conformations of src SH3 were identified by monitoring the deviation from the experimental phi values along molecular dynamics (MD) simulations of unfolding. Sixty MD trajectories (for a total of about 7 micros) were then started from the putative TSE. About one-half of the 60 runs reached the folded state while unfolding was observed in the remaining ha...

متن کامل

Structure of the cross-beta spine of amyloid-like fibrils.

Numerous soluble proteins convert to insoluble amyloid-like fibrils that have common properties. Amyloid fibrils are associated with fatal diseases such as Alzheimer's, and amyloid-like fibrils can be formed in vitro. For the yeast protein Sup35, conversion to amyloid-like fibrils is associated with a transmissible infection akin to that caused by mammalian prions. A seven-residue peptide segme...

متن کامل

Multiple conformations of catalytic serine and histidine in acetylxylan esterase at 0.90 A.

Acetylxylan esterase (AXEII; 207 amino acids) from Penicillium purpurogenum has substrate specificities toward acetate esters of d-xylopyranose residues in xylan and belongs to a new class of alpha/beta hydrolases. The crystal structure of AXEII has been determined by single isomorphous replacement and anomalous scattering, and refined at 0.90- and 1.10-A resolutions with data collected at 85 K...

متن کامل

Interstrand side chain--side chain interactions in a designed beta-hairpin: significance of both lateral and diagonal pairings.

The contributions of interstrand side chain-side chain contacts to beta-sheet stability have been examined with an autonomously folding beta-hairpin model system. RYVEV(D)PGOKILQ-NH2 ((D)P = D-proline, O = ornithine) has previously been shown to adopt a beta-hairpin conformation in aqueous solution, with a two-residue loop at D-Pro-Gly. In the present study, side chains that display interstrand...

متن کامل

Packed protein bilayers in the 0.90 A resolution structure of a designed alpha helical bundle.

A 12-residue peptide designed to form an alpha-helix and self-associate into an antiparallel 4-alpha-helical bundle yields a 0.9 A crystal structure revealing unanticipated features. The structure was determined by direct phasing with the "Shake-and-Bake" program, and contains four crystallographically distinct 12-mer peptide molecules plus solvent for a total of 479 atoms. The crystal is forme...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Bioelectrochemistry

دوره 72 1  شماره 

صفحات  -

تاریخ انتشار 2008